123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package flate
- import (
- "encoding/binary"
- "fmt"
- "io"
- "math"
- )
- const (
- // The largest offset code.
- offsetCodeCount = 30
- // The special code used to mark the end of a block.
- endBlockMarker = 256
- // The first length code.
- lengthCodesStart = 257
- // The number of codegen codes.
- codegenCodeCount = 19
- badCode = 255
- // maxPredefinedTokens is the maximum number of tokens
- // where we check if fixed size is smaller.
- maxPredefinedTokens = 250
- // bufferFlushSize indicates the buffer size
- // after which bytes are flushed to the writer.
- // Should preferably be a multiple of 6, since
- // we accumulate 6 bytes between writes to the buffer.
- bufferFlushSize = 246
- )
- // Minimum length code that emits bits.
- const lengthExtraBitsMinCode = 8
- // The number of extra bits needed by length code X - LENGTH_CODES_START.
- var lengthExtraBits = [32]uint8{
- /* 257 */ 0, 0, 0,
- /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
- /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
- /* 280 */ 4, 5, 5, 5, 5, 0,
- }
- // The length indicated by length code X - LENGTH_CODES_START.
- var lengthBase = [32]uint8{
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
- 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
- 64, 80, 96, 112, 128, 160, 192, 224, 255,
- }
- // Minimum offset code that emits bits.
- const offsetExtraBitsMinCode = 4
- // offset code word extra bits.
- var offsetExtraBits = [32]int8{
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
- 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
- 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
- /* extended window */
- 14, 14,
- }
- var offsetCombined = [32]uint32{}
- func init() {
- var offsetBase = [32]uint32{
- /* normal deflate */
- 0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
- 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
- 0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
- 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
- 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
- 0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
- /* extended window */
- 0x008000, 0x00c000,
- }
- for i := range offsetCombined[:] {
- // Don't use extended window values...
- if offsetExtraBits[i] == 0 || offsetBase[i] > 0x006000 {
- continue
- }
- offsetCombined[i] = uint32(offsetExtraBits[i]) | (offsetBase[i] << 8)
- }
- }
- // The odd order in which the codegen code sizes are written.
- var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
- type huffmanBitWriter struct {
- // writer is the underlying writer.
- // Do not use it directly; use the write method, which ensures
- // that Write errors are sticky.
- writer io.Writer
- // Data waiting to be written is bytes[0:nbytes]
- // and then the low nbits of bits.
- bits uint64
- nbits uint8
- nbytes uint8
- lastHuffMan bool
- literalEncoding *huffmanEncoder
- tmpLitEncoding *huffmanEncoder
- offsetEncoding *huffmanEncoder
- codegenEncoding *huffmanEncoder
- err error
- lastHeader int
- // Set between 0 (reused block can be up to 2x the size)
- logNewTablePenalty uint
- bytes [256 + 8]byte
- literalFreq [lengthCodesStart + 32]uint16
- offsetFreq [32]uint16
- codegenFreq [codegenCodeCount]uint16
- // codegen must have an extra space for the final symbol.
- codegen [literalCount + offsetCodeCount + 1]uint8
- }
- // Huffman reuse.
- //
- // The huffmanBitWriter supports reusing huffman tables and thereby combining block sections.
- //
- // This is controlled by several variables:
- //
- // If lastHeader is non-zero the Huffman table can be reused.
- // This also indicates that a Huffman table has been generated that can output all
- // possible symbols.
- // It also indicates that an EOB has not yet been emitted, so if a new tabel is generated
- // an EOB with the previous table must be written.
- //
- // If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid.
- //
- // An incoming block estimates the output size of a new table using a 'fresh' by calculating the
- // optimal size and adding a penalty in 'logNewTablePenalty'.
- // A Huffman table is not optimal, which is why we add a penalty, and generating a new table
- // is slower both for compression and decompression.
- func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
- return &huffmanBitWriter{
- writer: w,
- literalEncoding: newHuffmanEncoder(literalCount),
- tmpLitEncoding: newHuffmanEncoder(literalCount),
- codegenEncoding: newHuffmanEncoder(codegenCodeCount),
- offsetEncoding: newHuffmanEncoder(offsetCodeCount),
- }
- }
- func (w *huffmanBitWriter) reset(writer io.Writer) {
- w.writer = writer
- w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
- w.lastHeader = 0
- w.lastHuffMan = false
- }
- func (w *huffmanBitWriter) canReuse(t *tokens) (ok bool) {
- a := t.offHist[:offsetCodeCount]
- b := w.offsetEncoding.codes
- b = b[:len(a)]
- for i, v := range a {
- if v != 0 && b[i].zero() {
- return false
- }
- }
- a = t.extraHist[:literalCount-256]
- b = w.literalEncoding.codes[256:literalCount]
- b = b[:len(a)]
- for i, v := range a {
- if v != 0 && b[i].zero() {
- return false
- }
- }
- a = t.litHist[:256]
- b = w.literalEncoding.codes[:len(a)]
- for i, v := range a {
- if v != 0 && b[i].zero() {
- return false
- }
- }
- return true
- }
- func (w *huffmanBitWriter) flush() {
- if w.err != nil {
- w.nbits = 0
- return
- }
- if w.lastHeader > 0 {
- // We owe an EOB
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- }
- n := w.nbytes
- for w.nbits != 0 {
- w.bytes[n] = byte(w.bits)
- w.bits >>= 8
- if w.nbits > 8 { // Avoid underflow
- w.nbits -= 8
- } else {
- w.nbits = 0
- }
- n++
- }
- w.bits = 0
- w.write(w.bytes[:n])
- w.nbytes = 0
- }
- func (w *huffmanBitWriter) write(b []byte) {
- if w.err != nil {
- return
- }
- _, w.err = w.writer.Write(b)
- }
- func (w *huffmanBitWriter) writeBits(b int32, nb uint8) {
- w.bits |= uint64(b) << (w.nbits & 63)
- w.nbits += nb
- if w.nbits >= 48 {
- w.writeOutBits()
- }
- }
- func (w *huffmanBitWriter) writeBytes(bytes []byte) {
- if w.err != nil {
- return
- }
- n := w.nbytes
- if w.nbits&7 != 0 {
- w.err = InternalError("writeBytes with unfinished bits")
- return
- }
- for w.nbits != 0 {
- w.bytes[n] = byte(w.bits)
- w.bits >>= 8
- w.nbits -= 8
- n++
- }
- if n != 0 {
- w.write(w.bytes[:n])
- }
- w.nbytes = 0
- w.write(bytes)
- }
- // RFC 1951 3.2.7 specifies a special run-length encoding for specifying
- // the literal and offset lengths arrays (which are concatenated into a single
- // array). This method generates that run-length encoding.
- //
- // The result is written into the codegen array, and the frequencies
- // of each code is written into the codegenFreq array.
- // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
- // information. Code badCode is an end marker
- //
- // numLiterals The number of literals in literalEncoding
- // numOffsets The number of offsets in offsetEncoding
- // litenc, offenc The literal and offset encoder to use
- func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
- for i := range w.codegenFreq {
- w.codegenFreq[i] = 0
- }
- // Note that we are using codegen both as a temporary variable for holding
- // a copy of the frequencies, and as the place where we put the result.
- // This is fine because the output is always shorter than the input used
- // so far.
- codegen := w.codegen[:] // cache
- // Copy the concatenated code sizes to codegen. Put a marker at the end.
- cgnl := codegen[:numLiterals]
- for i := range cgnl {
- cgnl[i] = litEnc.codes[i].len()
- }
- cgnl = codegen[numLiterals : numLiterals+numOffsets]
- for i := range cgnl {
- cgnl[i] = offEnc.codes[i].len()
- }
- codegen[numLiterals+numOffsets] = badCode
- size := codegen[0]
- count := 1
- outIndex := 0
- for inIndex := 1; size != badCode; inIndex++ {
- // INVARIANT: We have seen "count" copies of size that have not yet
- // had output generated for them.
- nextSize := codegen[inIndex]
- if nextSize == size {
- count++
- continue
- }
- // We need to generate codegen indicating "count" of size.
- if size != 0 {
- codegen[outIndex] = size
- outIndex++
- w.codegenFreq[size]++
- count--
- for count >= 3 {
- n := 6
- if n > count {
- n = count
- }
- codegen[outIndex] = 16
- outIndex++
- codegen[outIndex] = uint8(n - 3)
- outIndex++
- w.codegenFreq[16]++
- count -= n
- }
- } else {
- for count >= 11 {
- n := 138
- if n > count {
- n = count
- }
- codegen[outIndex] = 18
- outIndex++
- codegen[outIndex] = uint8(n - 11)
- outIndex++
- w.codegenFreq[18]++
- count -= n
- }
- if count >= 3 {
- // count >= 3 && count <= 10
- codegen[outIndex] = 17
- outIndex++
- codegen[outIndex] = uint8(count - 3)
- outIndex++
- w.codegenFreq[17]++
- count = 0
- }
- }
- count--
- for ; count >= 0; count-- {
- codegen[outIndex] = size
- outIndex++
- w.codegenFreq[size]++
- }
- // Set up invariant for next time through the loop.
- size = nextSize
- count = 1
- }
- // Marker indicating the end of the codegen.
- codegen[outIndex] = badCode
- }
- func (w *huffmanBitWriter) codegens() int {
- numCodegens := len(w.codegenFreq)
- for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
- numCodegens--
- }
- return numCodegens
- }
- func (w *huffmanBitWriter) headerSize() (size, numCodegens int) {
- numCodegens = len(w.codegenFreq)
- for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
- numCodegens--
- }
- return 3 + 5 + 5 + 4 + (3 * numCodegens) +
- w.codegenEncoding.bitLength(w.codegenFreq[:]) +
- int(w.codegenFreq[16])*2 +
- int(w.codegenFreq[17])*3 +
- int(w.codegenFreq[18])*7, numCodegens
- }
- // dynamicSize returns the size of dynamically encoded data in bits.
- func (w *huffmanBitWriter) dynamicReuseSize(litEnc, offEnc *huffmanEncoder) (size int) {
- size = litEnc.bitLength(w.literalFreq[:]) +
- offEnc.bitLength(w.offsetFreq[:])
- return size
- }
- // dynamicSize returns the size of dynamically encoded data in bits.
- func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
- header, numCodegens := w.headerSize()
- size = header +
- litEnc.bitLength(w.literalFreq[:]) +
- offEnc.bitLength(w.offsetFreq[:]) +
- extraBits
- return size, numCodegens
- }
- // extraBitSize will return the number of bits that will be written
- // as "extra" bits on matches.
- func (w *huffmanBitWriter) extraBitSize() int {
- total := 0
- for i, n := range w.literalFreq[257:literalCount] {
- total += int(n) * int(lengthExtraBits[i&31])
- }
- for i, n := range w.offsetFreq[:offsetCodeCount] {
- total += int(n) * int(offsetExtraBits[i&31])
- }
- return total
- }
- // fixedSize returns the size of dynamically encoded data in bits.
- func (w *huffmanBitWriter) fixedSize(extraBits int) int {
- return 3 +
- fixedLiteralEncoding.bitLength(w.literalFreq[:]) +
- fixedOffsetEncoding.bitLength(w.offsetFreq[:]) +
- extraBits
- }
- // storedSize calculates the stored size, including header.
- // The function returns the size in bits and whether the block
- // fits inside a single block.
- func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
- if in == nil {
- return 0, false
- }
- if len(in) <= maxStoreBlockSize {
- return (len(in) + 5) * 8, true
- }
- return 0, false
- }
- func (w *huffmanBitWriter) writeCode(c hcode) {
- // The function does not get inlined if we "& 63" the shift.
- w.bits |= c.code64() << (w.nbits & 63)
- w.nbits += c.len()
- if w.nbits >= 48 {
- w.writeOutBits()
- }
- }
- // writeOutBits will write bits to the buffer.
- func (w *huffmanBitWriter) writeOutBits() {
- bits := w.bits
- w.bits >>= 48
- w.nbits -= 48
- n := w.nbytes
- // We over-write, but faster...
- binary.LittleEndian.PutUint64(w.bytes[n:], bits)
- n += 6
- if n >= bufferFlushSize {
- if w.err != nil {
- n = 0
- return
- }
- w.write(w.bytes[:n])
- n = 0
- }
- w.nbytes = n
- }
- // Write the header of a dynamic Huffman block to the output stream.
- //
- // numLiterals The number of literals specified in codegen
- // numOffsets The number of offsets specified in codegen
- // numCodegens The number of codegens used in codegen
- func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
- if w.err != nil {
- return
- }
- var firstBits int32 = 4
- if isEof {
- firstBits = 5
- }
- w.writeBits(firstBits, 3)
- w.writeBits(int32(numLiterals-257), 5)
- w.writeBits(int32(numOffsets-1), 5)
- w.writeBits(int32(numCodegens-4), 4)
- for i := 0; i < numCodegens; i++ {
- value := uint(w.codegenEncoding.codes[codegenOrder[i]].len())
- w.writeBits(int32(value), 3)
- }
- i := 0
- for {
- var codeWord = uint32(w.codegen[i])
- i++
- if codeWord == badCode {
- break
- }
- w.writeCode(w.codegenEncoding.codes[codeWord])
- switch codeWord {
- case 16:
- w.writeBits(int32(w.codegen[i]), 2)
- i++
- case 17:
- w.writeBits(int32(w.codegen[i]), 3)
- i++
- case 18:
- w.writeBits(int32(w.codegen[i]), 7)
- i++
- }
- }
- }
- // writeStoredHeader will write a stored header.
- // If the stored block is only used for EOF,
- // it is replaced with a fixed huffman block.
- func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
- if w.err != nil {
- return
- }
- if w.lastHeader > 0 {
- // We owe an EOB
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- }
- // To write EOF, use a fixed encoding block. 10 bits instead of 5 bytes.
- if length == 0 && isEof {
- w.writeFixedHeader(isEof)
- // EOB: 7 bits, value: 0
- w.writeBits(0, 7)
- w.flush()
- return
- }
- var flag int32
- if isEof {
- flag = 1
- }
- w.writeBits(flag, 3)
- w.flush()
- w.writeBits(int32(length), 16)
- w.writeBits(int32(^uint16(length)), 16)
- }
- func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
- if w.err != nil {
- return
- }
- if w.lastHeader > 0 {
- // We owe an EOB
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- }
- // Indicate that we are a fixed Huffman block
- var value int32 = 2
- if isEof {
- value = 3
- }
- w.writeBits(value, 3)
- }
- // writeBlock will write a block of tokens with the smallest encoding.
- // The original input can be supplied, and if the huffman encoded data
- // is larger than the original bytes, the data will be written as a
- // stored block.
- // If the input is nil, the tokens will always be Huffman encoded.
- func (w *huffmanBitWriter) writeBlock(tokens *tokens, eof bool, input []byte) {
- if w.err != nil {
- return
- }
- tokens.AddEOB()
- if w.lastHeader > 0 {
- // We owe an EOB
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- }
- numLiterals, numOffsets := w.indexTokens(tokens, false)
- w.generate()
- var extraBits int
- storedSize, storable := w.storedSize(input)
- if storable {
- extraBits = w.extraBitSize()
- }
- // Figure out smallest code.
- // Fixed Huffman baseline.
- var literalEncoding = fixedLiteralEncoding
- var offsetEncoding = fixedOffsetEncoding
- var size = math.MaxInt32
- if tokens.n < maxPredefinedTokens {
- size = w.fixedSize(extraBits)
- }
- // Dynamic Huffman?
- var numCodegens int
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
- if dynamicSize < size {
- size = dynamicSize
- literalEncoding = w.literalEncoding
- offsetEncoding = w.offsetEncoding
- }
- // Stored bytes?
- if storable && storedSize <= size {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- // Huffman.
- if literalEncoding == fixedLiteralEncoding {
- w.writeFixedHeader(eof)
- } else {
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
- }
- // Write the tokens.
- w.writeTokens(tokens.Slice(), literalEncoding.codes, offsetEncoding.codes)
- }
- // writeBlockDynamic encodes a block using a dynamic Huffman table.
- // This should be used if the symbols used have a disproportionate
- // histogram distribution.
- // If input is supplied and the compression savings are below 1/16th of the
- // input size the block is stored.
- func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []byte, sync bool) {
- if w.err != nil {
- return
- }
- sync = sync || eof
- if sync {
- tokens.AddEOB()
- }
- // We cannot reuse pure huffman table, and must mark as EOF.
- if (w.lastHuffMan || eof) && w.lastHeader > 0 {
- // We will not try to reuse.
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- w.lastHuffMan = false
- }
- // fillReuse enables filling of empty values.
- // This will make encodings always reusable without testing.
- // However, this does not appear to benefit on most cases.
- const fillReuse = false
- // Check if we can reuse...
- if !fillReuse && w.lastHeader > 0 && !w.canReuse(tokens) {
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- }
- numLiterals, numOffsets := w.indexTokens(tokens, !sync)
- extraBits := 0
- ssize, storable := w.storedSize(input)
- const usePrefs = true
- if storable || w.lastHeader > 0 {
- extraBits = w.extraBitSize()
- }
- var size int
- // Check if we should reuse.
- if w.lastHeader > 0 {
- // Estimate size for using a new table.
- // Use the previous header size as the best estimate.
- newSize := w.lastHeader + tokens.EstimatedBits()
- newSize += int(w.literalEncoding.codes[endBlockMarker].len()) + newSize>>w.logNewTablePenalty
- // The estimated size is calculated as an optimal table.
- // We add a penalty to make it more realistic and re-use a bit more.
- reuseSize := w.dynamicReuseSize(w.literalEncoding, w.offsetEncoding) + extraBits
- // Check if a new table is better.
- if newSize < reuseSize {
- // Write the EOB we owe.
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- size = newSize
- w.lastHeader = 0
- } else {
- size = reuseSize
- }
- if tokens.n < maxPredefinedTokens {
- if preSize := w.fixedSize(extraBits) + 7; usePrefs && preSize < size {
- // Check if we get a reasonable size decrease.
- if storable && ssize <= size {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- w.writeFixedHeader(eof)
- if !sync {
- tokens.AddEOB()
- }
- w.writeTokens(tokens.Slice(), fixedLiteralEncoding.codes, fixedOffsetEncoding.codes)
- return
- }
- }
- // Check if we get a reasonable size decrease.
- if storable && ssize <= size {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- }
- // We want a new block/table
- if w.lastHeader == 0 {
- if fillReuse && !sync {
- w.fillTokens()
- numLiterals, numOffsets = maxNumLit, maxNumDist
- } else {
- w.literalFreq[endBlockMarker] = 1
- }
- w.generate()
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- var numCodegens int
- if fillReuse && !sync {
- // Reindex for accurate size...
- w.indexTokens(tokens, true)
- }
- size, numCodegens = w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
- // Store predefined, if we don't get a reasonable improvement.
- if tokens.n < maxPredefinedTokens {
- if preSize := w.fixedSize(extraBits); usePrefs && preSize <= size {
- // Store bytes, if we don't get an improvement.
- if storable && ssize <= preSize {
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- w.writeFixedHeader(eof)
- if !sync {
- tokens.AddEOB()
- }
- w.writeTokens(tokens.Slice(), fixedLiteralEncoding.codes, fixedOffsetEncoding.codes)
- return
- }
- }
- if storable && ssize <= size {
- // Store bytes, if we don't get an improvement.
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- // Write Huffman table.
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
- if !sync {
- w.lastHeader, _ = w.headerSize()
- }
- w.lastHuffMan = false
- }
- if sync {
- w.lastHeader = 0
- }
- // Write the tokens.
- w.writeTokens(tokens.Slice(), w.literalEncoding.codes, w.offsetEncoding.codes)
- }
- func (w *huffmanBitWriter) fillTokens() {
- for i, v := range w.literalFreq[:literalCount] {
- if v == 0 {
- w.literalFreq[i] = 1
- }
- }
- for i, v := range w.offsetFreq[:offsetCodeCount] {
- if v == 0 {
- w.offsetFreq[i] = 1
- }
- }
- }
- // indexTokens indexes a slice of tokens, and updates
- // literalFreq and offsetFreq, and generates literalEncoding
- // and offsetEncoding.
- // The number of literal and offset tokens is returned.
- func (w *huffmanBitWriter) indexTokens(t *tokens, filled bool) (numLiterals, numOffsets int) {
- //copy(w.literalFreq[:], t.litHist[:])
- *(*[256]uint16)(w.literalFreq[:]) = t.litHist
- //copy(w.literalFreq[256:], t.extraHist[:])
- *(*[32]uint16)(w.literalFreq[256:]) = t.extraHist
- w.offsetFreq = t.offHist
- if t.n == 0 {
- return
- }
- if filled {
- return maxNumLit, maxNumDist
- }
- // get the number of literals
- numLiterals = len(w.literalFreq)
- for w.literalFreq[numLiterals-1] == 0 {
- numLiterals--
- }
- // get the number of offsets
- numOffsets = len(w.offsetFreq)
- for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
- numOffsets--
- }
- if numOffsets == 0 {
- // We haven't found a single match. If we want to go with the dynamic encoding,
- // we should count at least one offset to be sure that the offset huffman tree could be encoded.
- w.offsetFreq[0] = 1
- numOffsets = 1
- }
- return
- }
- func (w *huffmanBitWriter) generate() {
- w.literalEncoding.generate(w.literalFreq[:literalCount], 15)
- w.offsetEncoding.generate(w.offsetFreq[:offsetCodeCount], 15)
- }
- // writeTokens writes a slice of tokens to the output.
- // codes for literal and offset encoding must be supplied.
- func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
- if w.err != nil {
- return
- }
- if len(tokens) == 0 {
- return
- }
- // Only last token should be endBlockMarker.
- var deferEOB bool
- if tokens[len(tokens)-1] == endBlockMarker {
- tokens = tokens[:len(tokens)-1]
- deferEOB = true
- }
- // Create slices up to the next power of two to avoid bounds checks.
- lits := leCodes[:256]
- offs := oeCodes[:32]
- lengths := leCodes[lengthCodesStart:]
- lengths = lengths[:32]
- // Go 1.16 LOVES having these on stack.
- bits, nbits, nbytes := w.bits, w.nbits, w.nbytes
- for _, t := range tokens {
- if t < 256 {
- //w.writeCode(lits[t.literal()])
- c := lits[t]
- bits |= c.code64() << (nbits & 63)
- nbits += c.len()
- if nbits >= 48 {
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- //*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
- bits >>= 48
- nbits -= 48
- nbytes += 6
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- }
- continue
- }
- // Write the length
- length := t.length()
- lengthCode := lengthCode(length) & 31
- if false {
- w.writeCode(lengths[lengthCode])
- } else {
- // inlined
- c := lengths[lengthCode]
- bits |= c.code64() << (nbits & 63)
- nbits += c.len()
- if nbits >= 48 {
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- //*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
- bits >>= 48
- nbits -= 48
- nbytes += 6
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- }
- }
- if lengthCode >= lengthExtraBitsMinCode {
- extraLengthBits := lengthExtraBits[lengthCode]
- //w.writeBits(extraLength, extraLengthBits)
- extraLength := int32(length - lengthBase[lengthCode])
- bits |= uint64(extraLength) << (nbits & 63)
- nbits += extraLengthBits
- if nbits >= 48 {
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- //*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
- bits >>= 48
- nbits -= 48
- nbytes += 6
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- }
- }
- // Write the offset
- offset := t.offset()
- offsetCode := (offset >> 16) & 31
- if false {
- w.writeCode(offs[offsetCode])
- } else {
- // inlined
- c := offs[offsetCode]
- bits |= c.code64() << (nbits & 63)
- nbits += c.len()
- if nbits >= 48 {
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- //*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
- bits >>= 48
- nbits -= 48
- nbytes += 6
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- }
- }
- if offsetCode >= offsetExtraBitsMinCode {
- offsetComb := offsetCombined[offsetCode]
- //w.writeBits(extraOffset, extraOffsetBits)
- bits |= uint64((offset-(offsetComb>>8))&matchOffsetOnlyMask) << (nbits & 63)
- nbits += uint8(offsetComb)
- if nbits >= 48 {
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- //*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
- bits >>= 48
- nbits -= 48
- nbytes += 6
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- }
- }
- }
- // Restore...
- w.bits, w.nbits, w.nbytes = bits, nbits, nbytes
- if deferEOB {
- w.writeCode(leCodes[endBlockMarker])
- }
- }
- // huffOffset is a static offset encoder used for huffman only encoding.
- // It can be reused since we will not be encoding offset values.
- var huffOffset *huffmanEncoder
- func init() {
- w := newHuffmanBitWriter(nil)
- w.offsetFreq[0] = 1
- huffOffset = newHuffmanEncoder(offsetCodeCount)
- huffOffset.generate(w.offsetFreq[:offsetCodeCount], 15)
- }
- // writeBlockHuff encodes a block of bytes as either
- // Huffman encoded literals or uncompressed bytes if the
- // results only gains very little from compression.
- func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) {
- if w.err != nil {
- return
- }
- // Clear histogram
- for i := range w.literalFreq[:] {
- w.literalFreq[i] = 0
- }
- if !w.lastHuffMan {
- for i := range w.offsetFreq[:] {
- w.offsetFreq[i] = 0
- }
- }
- const numLiterals = endBlockMarker + 1
- const numOffsets = 1
- // Add everything as literals
- // We have to estimate the header size.
- // Assume header is around 70 bytes:
- // https://stackoverflow.com/a/25454430
- const guessHeaderSizeBits = 70 * 8
- histogram(input, w.literalFreq[:numLiterals])
- ssize, storable := w.storedSize(input)
- if storable && len(input) > 1024 {
- // Quick check for incompressible content.
- abs := float64(0)
- avg := float64(len(input)) / 256
- max := float64(len(input) * 2)
- for _, v := range w.literalFreq[:256] {
- diff := float64(v) - avg
- abs += diff * diff
- if abs > max {
- break
- }
- }
- if abs < max {
- if debugDeflate {
- fmt.Println("stored", abs, "<", max)
- }
- // No chance we can compress this...
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- }
- w.literalFreq[endBlockMarker] = 1
- w.tmpLitEncoding.generate(w.literalFreq[:numLiterals], 15)
- estBits := w.tmpLitEncoding.canReuseBits(w.literalFreq[:numLiterals])
- if estBits < math.MaxInt32 {
- estBits += w.lastHeader
- if w.lastHeader == 0 {
- estBits += guessHeaderSizeBits
- }
- estBits += estBits >> w.logNewTablePenalty
- }
- // Store bytes, if we don't get a reasonable improvement.
- if storable && ssize <= estBits {
- if debugDeflate {
- fmt.Println("stored,", ssize, "<=", estBits)
- }
- w.writeStoredHeader(len(input), eof)
- w.writeBytes(input)
- return
- }
- if w.lastHeader > 0 {
- reuseSize := w.literalEncoding.canReuseBits(w.literalFreq[:256])
- if estBits < reuseSize {
- if debugDeflate {
- fmt.Println("NOT reusing, reuse:", reuseSize/8, "> new:", estBits/8, "header est:", w.lastHeader/8, "bytes")
- }
- // We owe an EOB
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- } else if debugDeflate {
- fmt.Println("reusing, reuse:", reuseSize/8, "> new:", estBits/8, "- header est:", w.lastHeader/8)
- }
- }
- count := 0
- if w.lastHeader == 0 {
- // Use the temp encoding, so swap.
- w.literalEncoding, w.tmpLitEncoding = w.tmpLitEncoding, w.literalEncoding
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
- w.codegenEncoding.generate(w.codegenFreq[:], 7)
- numCodegens := w.codegens()
- // Huffman.
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
- w.lastHuffMan = true
- w.lastHeader, _ = w.headerSize()
- if debugDeflate {
- count += w.lastHeader
- fmt.Println("header:", count/8)
- }
- }
- encoding := w.literalEncoding.codes[:256]
- // Go 1.16 LOVES having these on stack. At least 1.5x the speed.
- bits, nbits, nbytes := w.bits, w.nbits, w.nbytes
- if debugDeflate {
- count -= int(nbytes)*8 + int(nbits)
- }
- // Unroll, write 3 codes/loop.
- // Fastest number of unrolls.
- for len(input) > 3 {
- // We must have at least 48 bits free.
- if nbits >= 8 {
- n := nbits >> 3
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- bits >>= (n * 8) & 63
- nbits -= n * 8
- nbytes += n
- }
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- if debugDeflate {
- count += int(nbytes) * 8
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- a, b := encoding[input[0]], encoding[input[1]]
- bits |= a.code64() << (nbits & 63)
- bits |= b.code64() << ((nbits + a.len()) & 63)
- c := encoding[input[2]]
- nbits += b.len() + a.len()
- bits |= c.code64() << (nbits & 63)
- nbits += c.len()
- input = input[3:]
- }
- // Remaining...
- for _, t := range input {
- if nbits >= 48 {
- binary.LittleEndian.PutUint64(w.bytes[nbytes:], bits)
- //*(*uint64)(unsafe.Pointer(&w.bytes[nbytes])) = bits
- bits >>= 48
- nbits -= 48
- nbytes += 6
- if nbytes >= bufferFlushSize {
- if w.err != nil {
- nbytes = 0
- return
- }
- if debugDeflate {
- count += int(nbytes) * 8
- }
- _, w.err = w.writer.Write(w.bytes[:nbytes])
- nbytes = 0
- }
- }
- // Bitwriting inlined, ~30% speedup
- c := encoding[t]
- bits |= c.code64() << (nbits & 63)
- nbits += c.len()
- if debugDeflate {
- count += int(c.len())
- }
- }
- // Restore...
- w.bits, w.nbits, w.nbytes = bits, nbits, nbytes
- if debugDeflate {
- nb := count + int(nbytes)*8 + int(nbits)
- fmt.Println("wrote", nb, "bits,", nb/8, "bytes.")
- }
- // Flush if needed to have space.
- if w.nbits >= 48 {
- w.writeOutBits()
- }
- if eof || sync {
- w.writeCode(w.literalEncoding.codes[endBlockMarker])
- w.lastHeader = 0
- w.lastHuffMan = false
- }
- }
|