123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package flate
- import (
- "math"
- "math/bits"
- )
- const (
- maxBitsLimit = 16
- // number of valid literals
- literalCount = 286
- )
- // hcode is a huffman code with a bit code and bit length.
- type hcode uint32
- func (h hcode) len() uint8 {
- return uint8(h)
- }
- func (h hcode) code64() uint64 {
- return uint64(h >> 8)
- }
- func (h hcode) zero() bool {
- return h == 0
- }
- type huffmanEncoder struct {
- codes []hcode
- bitCount [17]int32
- // Allocate a reusable buffer with the longest possible frequency table.
- // Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
- // The largest of these is literalCount, so we allocate for that case.
- freqcache [literalCount + 1]literalNode
- }
- type literalNode struct {
- literal uint16
- freq uint16
- }
- // A levelInfo describes the state of the constructed tree for a given depth.
- type levelInfo struct {
- // Our level. for better printing
- level int32
- // The frequency of the last node at this level
- lastFreq int32
- // The frequency of the next character to add to this level
- nextCharFreq int32
- // The frequency of the next pair (from level below) to add to this level.
- // Only valid if the "needed" value of the next lower level is 0.
- nextPairFreq int32
- // The number of chains remaining to generate for this level before moving
- // up to the next level
- needed int32
- }
- // set sets the code and length of an hcode.
- func (h *hcode) set(code uint16, length uint8) {
- *h = hcode(length) | (hcode(code) << 8)
- }
- func newhcode(code uint16, length uint8) hcode {
- return hcode(length) | (hcode(code) << 8)
- }
- func reverseBits(number uint16, bitLength byte) uint16 {
- return bits.Reverse16(number << ((16 - bitLength) & 15))
- }
- func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
- func newHuffmanEncoder(size int) *huffmanEncoder {
- // Make capacity to next power of two.
- c := uint(bits.Len32(uint32(size - 1)))
- return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
- }
- // Generates a HuffmanCode corresponding to the fixed literal table
- func generateFixedLiteralEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(literalCount)
- codes := h.codes
- var ch uint16
- for ch = 0; ch < literalCount; ch++ {
- var bits uint16
- var size uint8
- switch {
- case ch < 144:
- // size 8, 000110000 .. 10111111
- bits = ch + 48
- size = 8
- case ch < 256:
- // size 9, 110010000 .. 111111111
- bits = ch + 400 - 144
- size = 9
- case ch < 280:
- // size 7, 0000000 .. 0010111
- bits = ch - 256
- size = 7
- default:
- // size 8, 11000000 .. 11000111
- bits = ch + 192 - 280
- size = 8
- }
- codes[ch] = newhcode(reverseBits(bits, size), size)
- }
- return h
- }
- func generateFixedOffsetEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(30)
- codes := h.codes
- for ch := range codes {
- codes[ch] = newhcode(reverseBits(uint16(ch), 5), 5)
- }
- return h
- }
- var fixedLiteralEncoding = generateFixedLiteralEncoding()
- var fixedOffsetEncoding = generateFixedOffsetEncoding()
- func (h *huffmanEncoder) bitLength(freq []uint16) int {
- var total int
- for i, f := range freq {
- if f != 0 {
- total += int(f) * int(h.codes[i].len())
- }
- }
- return total
- }
- func (h *huffmanEncoder) bitLengthRaw(b []byte) int {
- var total int
- for _, f := range b {
- total += int(h.codes[f].len())
- }
- return total
- }
- // canReuseBits returns the number of bits or math.MaxInt32 if the encoder cannot be reused.
- func (h *huffmanEncoder) canReuseBits(freq []uint16) int {
- var total int
- for i, f := range freq {
- if f != 0 {
- code := h.codes[i]
- if code.zero() {
- return math.MaxInt32
- }
- total += int(f) * int(code.len())
- }
- }
- return total
- }
- // Return the number of literals assigned to each bit size in the Huffman encoding
- //
- // This method is only called when list.length >= 3
- // The cases of 0, 1, and 2 literals are handled by special case code.
- //
- // list An array of the literals with non-zero frequencies
- //
- // and their associated frequencies. The array is in order of increasing
- // frequency, and has as its last element a special element with frequency
- // MaxInt32
- //
- // maxBits The maximum number of bits that should be used to encode any literal.
- //
- // Must be less than 16.
- //
- // return An integer array in which array[i] indicates the number of literals
- //
- // that should be encoded in i bits.
- func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
- if maxBits >= maxBitsLimit {
- panic("flate: maxBits too large")
- }
- n := int32(len(list))
- list = list[0 : n+1]
- list[n] = maxNode()
- // The tree can't have greater depth than n - 1, no matter what. This
- // saves a little bit of work in some small cases
- if maxBits > n-1 {
- maxBits = n - 1
- }
- // Create information about each of the levels.
- // A bogus "Level 0" whose sole purpose is so that
- // level1.prev.needed==0. This makes level1.nextPairFreq
- // be a legitimate value that never gets chosen.
- var levels [maxBitsLimit]levelInfo
- // leafCounts[i] counts the number of literals at the left
- // of ancestors of the rightmost node at level i.
- // leafCounts[i][j] is the number of literals at the left
- // of the level j ancestor.
- var leafCounts [maxBitsLimit][maxBitsLimit]int32
- // Descending to only have 1 bounds check.
- l2f := int32(list[2].freq)
- l1f := int32(list[1].freq)
- l0f := int32(list[0].freq) + int32(list[1].freq)
- for level := int32(1); level <= maxBits; level++ {
- // For every level, the first two items are the first two characters.
- // We initialize the levels as if we had already figured this out.
- levels[level] = levelInfo{
- level: level,
- lastFreq: l1f,
- nextCharFreq: l2f,
- nextPairFreq: l0f,
- }
- leafCounts[level][level] = 2
- if level == 1 {
- levels[level].nextPairFreq = math.MaxInt32
- }
- }
- // We need a total of 2*n - 2 items at top level and have already generated 2.
- levels[maxBits].needed = 2*n - 4
- level := uint32(maxBits)
- for level < 16 {
- l := &levels[level]
- if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
- // We've run out of both leafs and pairs.
- // End all calculations for this level.
- // To make sure we never come back to this level or any lower level,
- // set nextPairFreq impossibly large.
- l.needed = 0
- levels[level+1].nextPairFreq = math.MaxInt32
- level++
- continue
- }
- prevFreq := l.lastFreq
- if l.nextCharFreq < l.nextPairFreq {
- // The next item on this row is a leaf node.
- n := leafCounts[level][level] + 1
- l.lastFreq = l.nextCharFreq
- // Lower leafCounts are the same of the previous node.
- leafCounts[level][level] = n
- e := list[n]
- if e.literal < math.MaxUint16 {
- l.nextCharFreq = int32(e.freq)
- } else {
- l.nextCharFreq = math.MaxInt32
- }
- } else {
- // The next item on this row is a pair from the previous row.
- // nextPairFreq isn't valid until we generate two
- // more values in the level below
- l.lastFreq = l.nextPairFreq
- // Take leaf counts from the lower level, except counts[level] remains the same.
- if true {
- save := leafCounts[level][level]
- leafCounts[level] = leafCounts[level-1]
- leafCounts[level][level] = save
- } else {
- copy(leafCounts[level][:level], leafCounts[level-1][:level])
- }
- levels[l.level-1].needed = 2
- }
- if l.needed--; l.needed == 0 {
- // We've done everything we need to do for this level.
- // Continue calculating one level up. Fill in nextPairFreq
- // of that level with the sum of the two nodes we've just calculated on
- // this level.
- if l.level == maxBits {
- // All done!
- break
- }
- levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
- level++
- } else {
- // If we stole from below, move down temporarily to replenish it.
- for levels[level-1].needed > 0 {
- level--
- }
- }
- }
- // Somethings is wrong if at the end, the top level is null or hasn't used
- // all of the leaves.
- if leafCounts[maxBits][maxBits] != n {
- panic("leafCounts[maxBits][maxBits] != n")
- }
- bitCount := h.bitCount[:maxBits+1]
- bits := 1
- counts := &leafCounts[maxBits]
- for level := maxBits; level > 0; level-- {
- // chain.leafCount gives the number of literals requiring at least "bits"
- // bits to encode.
- bitCount[bits] = counts[level] - counts[level-1]
- bits++
- }
- return bitCount
- }
- // Look at the leaves and assign them a bit count and an encoding as specified
- // in RFC 1951 3.2.2
- func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
- code := uint16(0)
- for n, bits := range bitCount {
- code <<= 1
- if n == 0 || bits == 0 {
- continue
- }
- // The literals list[len(list)-bits] .. list[len(list)-bits]
- // are encoded using "bits" bits, and get the values
- // code, code + 1, .... The code values are
- // assigned in literal order (not frequency order).
- chunk := list[len(list)-int(bits):]
- sortByLiteral(chunk)
- for _, node := range chunk {
- h.codes[node.literal] = newhcode(reverseBits(code, uint8(n)), uint8(n))
- code++
- }
- list = list[0 : len(list)-int(bits)]
- }
- }
- // Update this Huffman Code object to be the minimum code for the specified frequency count.
- //
- // freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
- // maxBits The maximum number of bits to use for any literal.
- func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
- list := h.freqcache[:len(freq)+1]
- codes := h.codes[:len(freq)]
- // Number of non-zero literals
- count := 0
- // Set list to be the set of all non-zero literals and their frequencies
- for i, f := range freq {
- if f != 0 {
- list[count] = literalNode{uint16(i), f}
- count++
- } else {
- codes[i] = 0
- }
- }
- list[count] = literalNode{}
- list = list[:count]
- if count <= 2 {
- // Handle the small cases here, because they are awkward for the general case code. With
- // two or fewer literals, everything has bit length 1.
- for i, node := range list {
- // "list" is in order of increasing literal value.
- h.codes[node.literal].set(uint16(i), 1)
- }
- return
- }
- sortByFreq(list)
- // Get the number of literals for each bit count
- bitCount := h.bitCounts(list, maxBits)
- // And do the assignment
- h.assignEncodingAndSize(bitCount, list)
- }
- // atLeastOne clamps the result between 1 and 15.
- func atLeastOne(v float32) float32 {
- if v < 1 {
- return 1
- }
- if v > 15 {
- return 15
- }
- return v
- }
- func histogram(b []byte, h []uint16) {
- if true && len(b) >= 8<<10 {
- // Split for bigger inputs
- histogramSplit(b, h)
- } else {
- h = h[:256]
- for _, t := range b {
- h[t]++
- }
- }
- }
- func histogramSplit(b []byte, h []uint16) {
- // Tested, and slightly faster than 2-way.
- // Writing to separate arrays and combining is also slightly slower.
- h = h[:256]
- for len(b)&3 != 0 {
- h[b[0]]++
- b = b[1:]
- }
- n := len(b) / 4
- x, y, z, w := b[:n], b[n:], b[n+n:], b[n+n+n:]
- y, z, w = y[:len(x)], z[:len(x)], w[:len(x)]
- for i, t := range x {
- v0 := &h[t]
- v1 := &h[y[i]]
- v3 := &h[w[i]]
- v2 := &h[z[i]]
- *v0++
- *v1++
- *v2++
- *v3++
- }
- }
|